Evolution of vortex-surface fields in viscous Taylor–Green and Kida–Pelz flows
نویسندگان
چکیده
In order to investigate continuous vortex dynamics based on a Lagrangian-like formulation, we develop a theoretical framework and a numerical method for computation of the evolution of a vortex-surface field (VSF) in viscous incompressible flows with simple topology and geometry. Equations describing the continuous, timewise evolution of a VSF from an existing VSF at an initial time are first reviewed. Non-uniqueness in this formulation is resolved by the introduction of a pseudo-time and a corresponding pseudo-evolution in which the evolved field is ‘advected’ by frozen vorticity onto a VSF. A weighted essentially non-oscillatory (WENO) method is used to solve the pseudo-evolution equations in pseudo-time, providing a dissipativelike regularization. Vortex surfaces are then extracted as iso-surfaces of the VSFs at different real physical times. The method is applied to two viscous flows with Taylor–Green and Kida–Pelz initial conditions respectively. Results show the collapse of vortex surfaces, vortex reconnection, the formation and roll-up of vortex tubes, vorticity intensification between anti-parallel vortex tubes, and vortex stretching and twisting. A possible scenario for understanding the transition from a smooth laminar flow to turbulent flow in terms of topology of vortex surfaces is discussed.
منابع مشابه
On Lagrangian and vortex-surface fields for flows with Taylor–Green and Kida–Pelz initial conditions
For a strictly inviscid barotropic flow with conservative body forces, the Helmholtz vorticity theorem shows that material or Lagrangian surfaces which are vortex surfaces at time t =0 remain so for t > 0. In this study, a systematic methodology is developed for constructing smooth scalar fields φ(x, y, z, t =0) for Taylor–Green and Kida– Pelz velocity fields, which, at t =0, satisfy ω · ∇φ=0. ...
متن کاملExternal and Internal Incompressible Viscous Flows Computation using Taylor Series Expansion and Least Square based Lattice Boltzmann Method
The lattice Boltzmann method (LBM) has recently become an alternative and promising computational fluid dynamics approach for simulating complex fluid flows. Despite its enormous success in many practical applications, the standard LBM is restricted to the lattice uniformity in the physical space. This is the main drawback of the standard LBM for flow problems with complex geometry. Several app...
متن کاملA Multigrid Accelerated High-order Compact Fractional-step Method for Unsteady Incompressible Viscous Flows
The objective of this study is the development of an efficient high-order compact scheme for unsteady incompressible viscous flows. The scheme is constructed on a staggered Cartesian grid system in order to avoid spurious oscillations in the pressure field. Navier-Stokes equations are advanced in time with the second order Adams-Bashford method without considering the pressure terms in the pred...
متن کاملRandom Vortex Method for Geometries with Unsolvable Schwarz-Christoffel Formula
In this research we have implemented the Random Vortex Method to calculate velocity fields of fluids inside open cavities in both turbulent and laminar flows. the Random Vortex Method is a CFD method (in both turbulent and laminar fields) which needs the Schwarz-Christoffel transformation formula to map the physical geometry into the upper half plane. In some complex geometries like the flow in...
متن کاملExperimental stabilisation of 2D vortex patterns using time-dependent forcing
Experimental results of the effect of time-periodic and “chirped” (electro-magnetic) forcing on vortex patterns in shallow-water-layer flows are presented. Analogously to vibrational control, the use of a time-periodic forcing results in stabilisation of otherwise unstable vortex patterns. Chirped frequency forcing yields self-organising patterns that are different from those in stationary and ...
متن کامل